Powered by OpenAIRE graph

Novel kinase fusion oncogenes in post-Chernobyl radiation-induced pediatric thyroid cancers

Novel kinase fusion oncogenes in post-Chernobyl radiation-induced pediatric thyroid cancers

Abstract

Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We identified non-overlapping somatic driver mutations in all 26 cases of post-Chernobyl thyroid cancers we studied through candidate gene assays and next generation RNA-sequencing. We found that 22/26 harbored fusion oncogenes arising primarily through intrachromosomal rearrangements. Altogether 23/26 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the two novel somatic rearrangements ETV6-NTRK3 and AGK-BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. A lower prevalence of fusion oncogenes was found in a cohort of pediatric thyroid cancers from children from the same geographical regions that were not exposed to radiation. Radiation-induced thyroid cancers are a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program. Examination of transcriptome profiles and genetic somatic changes in thyroid cancer.

Keywords

Transcriptomics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Cancer Research